

2nd Order Differential Equation

Many practical problems in engineering give rise to second-order differential equations of the form

$$a\frac{\mathrm{d}^2y}{\mathrm{d}x^2} + b\frac{\mathrm{d}y}{\mathrm{d}x} + cy = f(x)$$

where a, b and c are constant coefficients and f(x) is a given function of x. By the end of this Programme you will have no difficulty with equations of this type.

$$y = Ae^{m_1x} + Be^{m_2x}$$

Example

For the equation $2\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 0$, the auxiliary equation is $2m^2 + 5m + 6 = 0$.

In the same way, for the equation $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 0$, the auxiliary equation is $m^2 + 3m + 2 = 0$

Since the auxiliary equation is always a quadratic equation, the values of mcan be determined in the usual way.

i.e. if
$$m^2 + 3m + 2 = 0$$

$$(m+1)(m+2) = 0$$
 : $m = -1$ and $m = -2$

$$\therefore$$
 the solution of $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 0$ is

$$y = Ae^{-x} + Be^{-2x}$$

In the same way, if the auxiliary equation were $m^2 + 4m - 5 = 0$, this factorizes into (m+5)(m-1)=0 giving m=1 or -5, and in this case the solution would be $y = Ae^x + Be^{-5x}$

$$y = Ae^x + Be^{-5x}$$

1 Real and different roots to the auxiliary equation

Example 1

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 5\frac{\mathrm{d}y}{\mathrm{d}x} + 6y = 0$$

Auxiliary equation: $m^2 + 5m + 6 = 0$

$$(m+2)(m+3) = 0$$
 $m = -2$ or $m = -3$

$$\therefore$$
 Solution is $y = Ae^{-2x} + Be^{-3x}$

Example 2

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 7\frac{\mathrm{d}y}{\mathrm{d}x} + 12y = 0$$

Auxiliary equation: $m^2 - 7m + 12 = 0$

$$(m-3)(m-4) = 0$$
 : $m = 3$ or $m = 4$

So the solution is
$$y = Ae^{3x} + Be^{4x}$$

2 Real and equal roots to the auxiliary equation

Let us take
$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 0.$$

The auxiliary equation is: $m^2 + 6m + 9 = 0$

$$(m+3)(m+3) = 0$$
 $m = -3$ (twice)

If $m_1 = -3$ and $m_2 = -3$ then these would give the solution $y = Ae^{-3x} + Be^{-3x}$ and their two terms would combine to give $y = Ce^{-3x}$. But every second-order differential equation has two arbitrary constants, so there must be another term containing a second constant. In fact, it can be shown that $y = Kxe^{-3x}$ also satisfies the equation, so that the complete general solution is of the form $y = Ae^{-3x} + Bxe^{-3x}$

i.e.
$$y = e^{-3x}(A + Bx)$$

In general, if the auxiliary equation has real and equal roots, giving $m = m_1$ twice, the solution of the differential equation is

$$y = e^{m_1 x} (A + Bx)$$

Example 1

Solve
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 0$$

Auxiliary equation:
$$m^2 + 4m + 4 = 0$$

$$(m+2)(m+2) = 0$$
 : $m = -2$ (twice)

The solution is:
$$y = e^{-2x}(A + Bx)$$

Here is another:

Example 2

Solve
$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 10\frac{\mathrm{d}y}{\mathrm{d}x} + 25y = 0$$

Auxiliary equation:
$$m^2 + 10m + 25 = 0$$

$$(m+5)^2 = 0$$
 : $m = -5$ (twice)

$$y = e^{-5x}(A + Bx)$$

3 Complex roots to the auxiliary equation

Now let us see what we get when the roots of the auxiliary equation are complex. Suppose $m = \alpha \pm j\beta$, i.e. $m_1 = \alpha + j\beta$ and $m_2 = \alpha - j\beta$. Then the solution would be of the form:

$$y = Ce^{(\alpha+j\beta)x} + De^{(\alpha-j\beta)x} = Ce^{\alpha x} \cdot e^{j\beta x} + De^{\alpha x} \cdot e^{-j\beta x}$$
$$= e^{\alpha x} \{ Ce^{j\beta x} + De^{-j\beta x} \}$$

Now from our previous work on complex numbers, we know that:

$$e^{jx} = \cos x + j \sin x$$

$$e^{-jx} = \cos x - j \sin x$$
and that
$$\begin{cases} e^{j\beta x} = \cos \beta x + j \sin \beta x \\ e^{-j\beta x} = \cos \beta x - j \sin \beta x \end{cases}$$

Our solution above can therefore be written:

$$y = e^{\alpha x} \{ C(\cos \beta x + j \sin \beta x) + D(\cos \beta x - j \sin \beta x) \}$$

$$= e^{\alpha x} \{ (C + D) \cos \beta x + j(C - D) \sin \beta x \}$$

$$y = e^{\alpha x} \{ A \cos \beta x + B \sin \beta x \}$$
where $A = C + D$ and $B = j(C - D)$

 \therefore If $m = \alpha \pm j\beta$, the solution can be written in the form:

$$y = e^{\alpha x} \Big\{ A \cos \beta x + B \sin \beta x \Big\}$$

Here is an example: If $m = -2 \pm j3$

then
$$y = e^{-2x} \{ A \cos 3x + B \sin 3x \}$$

Similarly, if
$$m = 5 \pm j2$$
 then $y =$

Similarly, if
$$m = 5 \pm j2$$
 then $y = e^{5x} [A \cos 2x + B \sin 2x]$

Solve
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 9y = 0$$

Auxiliary equation: $m^2 + 4m + 9 = 0$

$$\therefore m = \frac{-4 \pm \sqrt{16 - 36}}{2} = \frac{-4 \pm \sqrt{-20}}{2} = \frac{-4 \pm 2j\sqrt{5}}{2} = -2 \pm j\sqrt{5}$$

In this case $\alpha = -2$ and $\beta = \sqrt{5}$

Solution is: $y = e^{-2x} (A \cos \sqrt{5}x + B \sin \sqrt{5}x)$