

2nd Order

Differential Equation

Many practical problems in engineering give rise to second-order differential equations of the form

$$
a \frac{\mathrm{~d}^{2} y}{\mathrm{dx} x^{2}}+b \frac{\mathrm{~d} y}{\mathrm{~d} x}+c y=f(x)
$$

where a, b and c are constant coefficients and $f(x)$ is a given function of x. By the end of this Programme you will have no difficulty with equations of this type.
$\square a A m^{2} e^{m x}+b A m e^{m x}+c A e^{m x}=0$

$$
y=A e^{m_{1} x}+B e^{m_{2} x}
$$

Example

For the equation $2 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+5 \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 y=0$, the auxiliary equation is $2 m^{2}+5 m+6=0$.

In the same way, for the equation $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{dx}}+2 y=0$, the auxiliary equation is $m^{2}+3 m+2=0$
Since the auxiliary equation is always a quadratic equation, the values of m can be determined in the usual way.
i.e. if $m^{2}+3 m+2=0$

$$
(m+1)(m+2)=0 \quad \therefore m=-1 \text { and } m=-2
$$

\therefore the solution of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{dx}}+2 y=0$ is

$$
y=A e^{-x}+B e^{-2 x}
$$

In the same way, if the auxiliary equation were $m^{2}+4 m-5=0$, this factorizes into $(m+5)(m-1)=0$ giving $m=1$ or -5 , and in this case the solution would be

$$
y=A e^{x}+B e^{-5 x}
$$

1 Rea/ and different roots to the auxiliary equation

Example 1

$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+5 \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 y=0$
Auxiliary equation: $m^{2}+5 m+6=0$
$\therefore(m+2)(m+3)=0 \quad \therefore m=-2$ or $m=-3$
\therefore Solution is $y=A e^{-2 x}+B e^{-3 x}$

Example 2

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-7 \frac{\mathrm{~d} y}{\mathrm{~d} x}+12 y=0
$$

Auxiliary equation: $m^{2}-7 m+12=0$
$(m-3)(m-4)=0 \quad \therefore m=3$ or $m=4$
So the solution is

$$
y=A e^{3 x}+B e^{4 x}
$$

2 Real and equal roots to the auxiliary equation

Let us take $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+9 y=0$.
The auxiliary equation is: $m^{2}+6 m+9=0$
$\therefore(m+3)(m+3)=0 \quad \therefore m=-3$ (twice)
If $m_{1}=-3$ and $m_{2}=-3$ then these would give the solution $y=A e^{-3 x}+B e^{-3 x}$ and their two terms would combine to give $y=\mathrm{Ce}^{-3 x}$. But every second-order differential equation has two arbitrary constants, so there must be another term containing a second constant. In fact, it can be shown that $y=K x e^{-3 x}$ also satisfies the equation, so that the complete general solution is of the form $y=A e^{-3 x}+B x e^{-3 x}$
i.e. $y=e^{-3 x}(A+B x)$

In general, if the auxiliary equation has real and equal roots, giving $m=m_{1}$ twice, the solution of the differential equation is

$$
y=e^{m_{1} x}(A+B x)
$$

Example 1

Solve $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 y=0$
Auxiliary equation: $m^{2}+4 m+4=0$
$(m+2)(m+2)=0 \quad \therefore m=-2$ (twice)
The solution is: $y=e^{-2 x}(A+B x)$
Here is another:

Example 2

Solve $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+10 \frac{\mathrm{~d} y}{\mathrm{~d} x}+25 y=0$
Auxiliary equation: $m^{2}+10 m+25=0$

$$
\begin{aligned}
& \quad(m+5)^{2}=0 \quad \therefore m=-5 \text { (twice) } \\
& y=e^{-5 x}(A+B x)
\end{aligned}
$$

3 Complex roots to the auxiliary equation

Now let us see what we get when the roots of the auxiliary equation are complex. Suppose $m=\alpha \pm j \beta$, i.e. $m_{1}=\alpha+j \beta$ and $m_{2}=\alpha-j \beta$. Then the solution would be of the form:

$$
\begin{aligned}
y & =C e^{(\alpha+\beta) x}+D e^{(\alpha-\beta \rho) x}=C e^{\alpha x} \cdot e^{\beta \beta x}+D e^{\rho x} \cdot e^{-\beta \beta x} \\
& =e^{\alpha x}\left\{C e^{j \beta x}+D e^{-j \beta x}\right\}
\end{aligned}
$$

Now from our previous work on complex numbers, we know that:

$$
\begin{aligned}
e^{j x} & =\cos x+j \sin x \\
e^{-j x} & =\cos x-j \sin x
\end{aligned} \text { and that }\left\{\begin{aligned}
e^{j / \beta x} & =\cos \beta x+j \sin \beta x \\
e^{-j / 3 x} & =\cos \beta x-j \sin \beta x
\end{aligned}\right.
$$

Our solution above can therefore be written:

$$
\begin{aligned}
& y=e^{\rho x}\{C(\cos \beta x+j \sin \beta x)+D(\cos \beta x-j \sin \beta x)\} \\
&=e^{\rho x}\{(C+D) \cos \beta x+j(C-D) \sin \beta x\} \\
& y=e^{2 x}\{A \cos \beta x+B \sin \beta x\} \\
& \text { where } A=C+D \text { and } B=j(C-D)
\end{aligned}
$$

\therefore If $m=\alpha \pm j \beta$, the solution can be written in the form:
$y=e^{\alpha x}\{A \cos \beta x+B \sin \beta x\}$
Here is an example: If $m=-2 \pm / 3$

$$
\text { then } y=e^{-2 x}\{A \cos 3 x+B \sin 3 x\}
$$

Similarly, if $m=5 \pm / 2$ then $y=$

$$
y=e^{5 x}[A \cos 2 x+B \sin 2 x]
$$

Solve $\frac{\mathrm{d}^{2} y}{\mathrm{dx}}+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+9 y=0$
Auxiliary equation: $m^{2}+4 m+9=0$
$\therefore m=\frac{-4 \pm \sqrt{16-36}}{2}=\frac{-4 \pm \sqrt{-20}}{2}=\frac{-4 \pm 2 j \sqrt{5}}{2}=-2 \pm j \sqrt{5}$
In this case $\alpha=-2$ and $\beta=\sqrt{5}$
Solution is: $\quad y=e^{-2 x}(A \cos \sqrt{5} x+B \sin \sqrt{5} x)$

